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ABSTRACT: Nitrate (NO3
−) is a widespread contaminant of

groundwater and surface water across the United States that has
deleterious effects to human and ecological health. This study
develops a model for predicting point-level groundwater NO3

− at a
state scale for monitoring wells and private wells of North Carolina.
A land use regression (LUR) model selection procedure is
developed for determining nonlinear model explanatory variables
when they are known to be correlated. Bayesian Maximum Entropy
(BME) is used to integrate the LUR model to create a LUR-BME
model of spatial/temporal varying groundwater NO3

− concen-
trations. LUR-BME results in a leave-one-out cross-validation r2 of
0.74 and 0.33 for monitoring and private wells, effectively predicting
within spatial covariance ranges. Results show significant differences in the spatial distribution of groundwater NO3

−

contamination in monitoring versus private wells; high NO3
− concentrations in the southeastern plains of North Carolina;

and wastewater treatment residuals and swine confined animal feeding operations as local sources of NO3
− in monitoring wells.

Results are of interest to agencies that regulate drinking water sources or monitor health outcomes from ingestion of drinking
water. Lastly, LUR-BME model estimates can be integrated into surface water models for more accurate management of
nonpoint sources of nitrogen.

■ INTRODUCTION

Nitrate (NO3
−) is a widespread contaminant of groundwater

and surface water across the United States that has deleterious
effects to human and ecological health.1,2 The maximum
contaminant level of 10 mg/L established by the U.S.
Environmental Protection Agency was based on the prevention
of methemoglobinemia in infants;3 moreover, there is concern
of many cancer types4−6 and from lower concentration
exposures.7 Excessive NO3

− inputs into the environment can
result in adverse changes to ecosystems such as eutrophication
and harmful algal blooms.8−10

Protection of drinking water sources is mandated by the Safe
Drinking Water Act; however, private well drinking water is
unregulated in contrast to regulated public water systems.11 In
North Carolina where more than 1/4 of the population relies
on private wells for drinking water,12 quantifying potential
exposures is important to protect public health. Monitoring
programs such as the U.S. Geological Survey’s (USGS)
National Water Quality Assessment (NAWQA) Program13

and the NC Division of Water Resources (NC DWR) ambient
monitoring program14 are effective because they use consistent
sampling and analytical methods, yet this water quality
monitoring data is spatially and temporally sparse.

Land use regression15−21(LUR) is a proven method that
complements monitoring programs and provides effective
means for water quality exposure assessments. Previous studies
have related land use characteristics to NO3

− contamination in
surface waters22−25 and groundwater. Additionally, regression-
based methods have been implemented for estimating loading
to surface waters.21,23,24 In North Carolina, groundwater
discharge to streams (baseflow) accounts for roughly two-
thirds of annual streamflow in the Coastal Plains region of
North Carolina26 and may be contributing excess nutrient loads
in streams;27 however, current surface water models do not
directly account for this large source of NO3

− from baseflow.
For linear regression models, traditional statistical methods

to select predictor variables include forward, backward, and
stepwise selection. These methods can lead to erroneous
models with high multicollinearity when the candidate variables
are related. However, for LUR model studies, model selection
methods have been modified to accommodate the potential
high multicollinearity from selection variables that differ only by
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a hyperparameter.16,19 Additionally, lasso28 and elastic net29

regression are potential methods for selecting linear LUR
models, but to the authors’ knowledge has not been employed
for LUR model selection. For nonlinear regression, methods for
model selection based on a large candidate variable space
include stepwise logistic regression30,31 and regression tree
analysis which approximates nonlinear relationships;32,33 still
for continuous variable outcomes with nonlinear models, less
rigorous methods for model selection have been developed.
The number of candidate variables is generally consolidated to
a tractable number through expert knowledge or single variable
regression, and then various combinations of models are tested
until one finds the best model in terms of a validation statistic
like R2 or Akaike Information Criterion (AIC).15,21,24

The advanced geostatistical method of Bayesian Maximum
Entropy (BME) has also been shown to successfully estimate
groundwater quality contaminants.19,34 An advantage of BME is
its ability to quantify spatial and temporal variability which is
then used in the estimation process at unmonitored locations.
BME, like all geostatistical methods, is data driven and can only
provide reliable estimates within the vicinity of measured
values. However, BME utilizes Bayesian epistemic knowledge
blending to combine multiple sources of data, which has been
successfully demonstrated with incorporation of deterministic
mean trend functions into BME for groundwater.19

Local spatial and temporal variability have lead previous
studies to reduce NO3

− variability with a combination of spatial
smoothing and temporal averaging.15,35,36 For instance, Nolan
and Hitt spatially smoothed NO3

− by taking watershed averages
over their study time period, based on watersheds with an
average size of approximately 2000 square-kilometers. They not
only helped elucidate trends and potential explanatory
variables, but they were able to explain a large percentage in
the variability of spatially smoothed NO3

− with a r2 of 0.80 for
shallow aquifer NO3

− and 0.77 for deep aquifer NO3
−. However,

this advantage of reducing groundwater NO3
− variance is also a

limitation because factors affecting spatially smoothed and
temporally averaged NO3

− might not affect point-level NO3
−,

and vice versa. Furthermore, since groundwater NO3
− contains

significant local variability, the need to provide local estimates
of its variability naturally follows. Models developed for
predicting spatially smoothed and temporally averaged NO3

−

will likely not be successful in predicting observed, point-level
NO3

−.
The objectives of this study are to (1) develop a novel

nonlinear regression model for spatial point-level and time-
averaged groundwater NO3

− concentrations in monitoring and
private wells of North Carolina, (2) produce the first space/
time estimates of groundwater NO3

− concentrations across a
large study domain by integrating LUR models into the BME
framework, and (3) compare space/time NO3

− concentration
models to the current standard of spatially averaged NO3

−

concentration models. Two nonlinear models, whose form is
adopted from Nolan and Hitt15 with components that
represent NO3

− sources, attenuation, and transport, are created
and selected with a new model selection framework for
nonlinear regression models with correlated explanatory
variables. We then integrate the LUR models into the BME
framework to model space/time point-level NO3

−. Results are of
interest to agencies that regulate drinking water sources or that
monitor health outcomes from ingestion of drinking water.
Additionally, the results can provide guidance on factors

affecting the point-level variability of groundwater NO3
− and

new resources for more accurate management of NO3
− loads.

■ MATERIALS AND METHODS
Nitrate Data. NO3

− data across North Carolina are obtained
from three data sources (Supporting Information (SI) Figure
S1), which are detailed as follows:
North Carolina Division of Water Resources (NC-DWR)

collects data near select permitted, dedicated wastewater
treatment residual (WTR) application fields via monitoring
wells. The second source is U.S. Geological Survey (USGS)
data obtained through the National Water Information System
(NWIS). Well depth information is not linked directly to each
monitoring well although a subset of well depth information is
available. Based on the subset with depth information, they
have a mean depth of 33 feet with a standard deviation of 32
feet. Together, the NCDWR and USGS data represent shallow
aquifer monitoring wells (n = 12 322), which hereafter will be
referred to as “monitoring well data.”
The last data set of groundwater NO3

− comes from private
well data collected by the North Carolina Department of
Health and Human Services (NC-DHHS). Groundwater NO3

−

was obtained and address geocoded using the same process
outlined in Messier et al.19 Well depth information is not linked
to water quality measurements, but a separate database on
private well construction contains well depths. The mean depth
is 95 feet with a standard deviation of 109 ft. This data will
hereafter be referred to as “private well data” and this data is
assumed to represent a deeper aquifer model of groundwater
NO3

− (n = 22 067).
The median NO3

− concentrations for the NC-DWR, USGS,
and private well data are 1.30, 0.10, and 0.62 mg/L respectively.
The means are 4.61, 6.14, and 1.66 mg/L respectively. The
percent observed above the detection limit is 79.7, 61.4, and
30.6 respectively. Additional basic statistics for the data set are
available in the SI (Table S1).

Spatial and Temporal Observation Scales. In this work
we develop models for NO3

− at three observation scales. The
finer scale corresponds to the space/time point-level NO3

− data,
that is, NO3

− data as it is sampled. An intermediate observation
scale corresponds to the time-averaged data, whereby NO3

− at
each well is averaged. The time-averaged data provides point-
level spatial resolution, but no time variability. Finally, the
coarser resolution observation scale corresponds to the spatially
smoothed/time-averaged data, which was obtained by spatially
smoothing the time-averaged data using a 25 km exponential
kernel function. We choose 25 km as it is approximately the
average size of watersheds in many NAWQA groundwater
studies.15,37 While previous works over large study domains
have developed models for spatially smoothed/time average
NO3

− data, very few models, if any, have been developed for
point-level NO3

− data over large study domains. Our work
therefore fills that knowledge gap.

Maximum Likelihood Estimation of Nitrate Distribu-
tions. Our notation for variables denotes a single random
variable Z in capital letter, its realization, z, in lower case; and
vectors and matrices in bold faces, for example, Z = [Z1,...,Zn]

T

and Z = [z1,...,zn]
T.

Due to the high percentage of nondetect (left-censored) data
in both the monitoring well and private well databases, a
maximum likelihood estimation (MLE) is used for the
estimation of monitoring well and private well distribution
parameters,38 which is assumed to follow a log-normal
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distribution. MLE can directly account for the nondetect values
by modifying the likelihood equation, with the censored
observations given by the cumulative distribution function
(CDF) evaluated at the detection limit. The MLE equation
then becomes38

∏ ∏μ σ| = ×μ σ μ σ
| ≥ | ≤

f z F tz( , ) { ( )} { ( )}
z z t

i
z z t

i, ,

i i i i i i (1)

where fμ,σ(zi) denotes the normal probability distribution
function (PDF) of log-transformed (natural log) point-level
NO3

−, zi, with mean and standard deviation parameters μ and σ,
and Fμ,σ(ti) denotes the CDF of the distribution taken at the log
of the detection limit ti. The estimated distributions are used to
quantify the extent of contamination in monitoring and private
wells and to handle nondetect data. For the regression analysis,
the log-NO3

− concentration of a measurement below detection
limit ti is assigned a value equal to the mean of the normal
distribution N(μ,σ) truncated above log(ti), whereas the
geostatistical analysis can handle the full truncated normal
distribution.19

Spatial Explanatory Variables. Spatial explanatory
variables representing possible groundwater NO3

− sources,
attenuation, and transport factors were constructed prior to
model development. Potential variables are summarized below
with details available in the SI (Table S2).
All of the explanatory variables have an inherent spatial

distance parameter such as circular buffer radius or exponential
decay range, which hereinafter is referred to as the hyper-
parameter. Each variable is calculated with multiple hyper-
parameter values since optimal distance is unknown a priori. In
the final model selection process, a maximum of one
hyperparameter value is allowed to be selected from each
variable to avoid multicollinearity and effectively optimize the
hyperparameter. The following variables adopted from Nolan
and Hitt15 are NO3

− sources calculated as kg-NO3
−/yr/ha within

a circular buffer: Sources include farm fertilizer, nonfarm
fertilizer, manure, and NO3

− atmospheric deposition. Each
National Landcover Database (NLCD) category is calculated as
a percent within a circular buffer. On-site wastewater treatment
plant variables, septic density and average nitrate loading, are
created following the methods of Pradhan et al.39 The following
point sources are calculated as the sum of exponentially
decaying contribution:19 Wastewater treatment residual field
application sites (WTR), swine confined animal feeding
operations (CAFOs), poultry CAFOs, cattle farms, and
wastewater treatment plants (WWTP). Mean slope in degrees
and topographic wetness index40 (TWI) are calculated within
circular buffers. Water withdrawals in cubic meters per second
are calculated using USGS water use estimates.12 Lastly,
population density is calculated within circular buffers from
U.S. Census block data assuming an even distribution of
population per census block.
Nonlinear Regression Model Selection. In order to

develop a LUR model for NO3
− we adopt a similar nonlinear

multivariable model implemented by groundwater vulnerability
assessment(GWAVA)15 which is also similar to the surface
water counterpart spatially referenced regression on watershed
Attributes (SPARROW).21,23,24 We partition explanatory
variables into source, attenuation, and transport terms.
Following Nolan and Hitt,15 the nonlinear multivariable
model is constructed as follows:

∑ ∑

∑
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where zi is the log-transform of NO3
− concentration at point i,

β0 is the intercept, Yi
(k)(λk) is the k-th source predictor variable

at point i with hyperparameter value λk, βk is its source
regression coefficient, Yi

(l)(λl) is the l-th attenuation predictor
variable at point i with hyperparameter value λl, γlis its
attenuation regression coefficient, Yi

(m)(λm) is the m-th
transport predictor variable with hyperparameter value λm, δm
is its transport regression coefficient, and εi is an error term.
The model contains an additive, linear submodel for sources,
and multiplicative exponential terms for the attenuation and
transport variables that act directly on the source terms.15 For
example Yi

(k)(λk) may be equal to a land cover variable or a
point source variable. The attenuation variables,Yi

(l), physically
represent areas that are associated with removing NO3

− from
groundwater such as wetlands and histosol soil. The transport
variables, Yi

(m)(λm)., may be equal to any variable that effects the
movement of NO3

− in the groundwater such as the soil
permeability and average slope. The attenuation variable
coefficients, γl, are constrained to be negative allowing them
to only decrease NO3

− concentrations, while the transport
variable coefficients, δm, are unconstrained allowing variables to
increase or decrease NO3

− concentrations.
We developed a nonlinear model regression model selection

technique that accommodates variables that differ only by a
hyperparameter and can be adapted for various nonlinear
model forms. Our model selection procedure is essentially a
nonlinear extension of a distance decay regression selection
strategy (ADDRESS),16 since to the authors’ knowledge there
is not a regression selection strategy for nonlinear LUR. We
implement constrained forward nonlinear regression with
hyperparameter optimization (CFN-RHO) whose simple
algorithm is as follows (SI Figure S2):

(1) Initialization: Linear regression on all candidate variables
to obtain the initial values for the nonlinear model fitting.

(2) Candidate Variables: In the first iteration, the candidate
variables consist of the source variables only. In the
second iteration, candidate variables consist of attenu-
ation and transport variables only. This is done so as to
obtain an initial model with at least one source and one
attenuation or transport variable. In every iteration
afterward the candidate variables can be any variable.

(3) Nonlinear Regression: Nonlinear regression is performed
by adding each candidate variable to the current model
one at a time. Note that candidate variables are added
according to their predetermined place in the nonlinear
model (i.e., Source variables are in a linear submodel;
Attenuation and transport in the exponential submodel.).

(4) Variable Selection: The variable that results in the highest
R-Squared (lowest AIC is also an option) while
constrained to maintaining all variables in the model
statistically significant (p-value <0.05), is selected and
added to the model. R-Squared ties beyond the
thousandth decimal place are settled by the lowest p-
value.

(5) Hyperparameter Optimization: The rest of the candidate
variables that differ from the selected variable by only a
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hyperparameter are removed from the candidate variable
pool, effectively optimizing the hyperparameter value.

(6) Selection Criteria: The new model must increase R-
squared over user-defined selection criteria such as a one
percent increase. If the model passes the selection
criteria, then the iterative process continues to step 2. If it
does not, then the algorithm ends with the final model
being the i-th minus one model since the last variable did
not pass the selection criteria.

BME Estimation Framework for Space/Time Mapping
Analysis. To improve estimation accuracy, we integrate the
time-averaged LUR results into the bayesian maximum entropy
(BME) method of modern spatiotemporal geostatistics.41,42

BME is a space/time geostatistical estimation framework
grounded in epistemic principles that reduces to the space/
time simple, ordinary, and universal Kriging methods as its
linear limiting case when considering a limited, Gaussian,
knowledge base, while also allowing the flexibility to process a
wide variety of additional knowledge bases (physical laws,
empirical relationships, non-Gaussian distributions, hard and
soft data, etc.). We only provide the fundamental BME
equations for mapping NO3

−; the reader is referred to other
works for more detailed derivations of BME equations41,43 and
LUR integration into BME.19

Let Z(p)be the space/time random field (S/TRF) describing
the distribution of groundwater log-NO3

− across space and time,
where p = (s,t), s is the space coordinate and t is time. The
knowledge available is organized in the general knowledge base
(G-KB) about the space/time trend and variability (e.g., mean,
covariance) of NO3

− across the study domain, and the site-
specific knowledge base (S-KB) corresponding to the hard and
soft data zd available at a set of specific space/time points pd.
First, we define the transformation of log-NO3

− data zd at
locations pd as

−=x z po ( )h h hZ (3)

where oZ(ph) may be any deterministic offset that can be
mathematically calculated at any space/time coordinate p. We
then define X(p) as a homogeneous/stationary S/TRF
representing the variability and uncertainty with the trans-
formed data xd, that is, such that xd is a realization of X(p).
Finally we let Z(p) = X(p) + oz(p) be the S/TRF representing
groundwater log-NO3

−. In this study, we consider two choices

for oz(p): (1) a constant value determined by the MLE mean
resulting in a purely BME model, and (2) the LUR estimate
Lz(ph) from CFN-RHO resulting in a LUR-BME model.
The G-KB for the S/TRF X(p) describes its local space/time

trends and dependencies. In this work, the general knowledge
consists of the space/time mean trend function mx(p) =
E[X(p)], and the covariance function CX(p,p′)=E[[X(p) −
mx(p)][X(p′) − mx(p′)]] of the S/TRF X(p). The S-KB
consists of hard data and soft data; with hard data, xh = zh −
Lz(ph), for data points where zh is observed over the detection
limit and soft data, Xs, is at locations ps where NO3

− is observed
below the detecti limit. Following Messier et al.,19 the BME soft
data for log-NO3

− is modeled as a Gaussian distribution
truncated above the log of the detection limit.
The overall knowledge bases considered consist of G =

{mx(p), CX(p,p′)}, and S = {fs(·), Xh}. In this case the BME set
of equations reduces to

∫= − x x x xf x A d f x f )( ) ( , , ) (s h s sK k G k S
1

(4)

where f K(xk) is the BME posterior PDF for the offset-removed
log NO3

−(xk) at some unmonitored estimation point pk, f G(xh,
xs, xk) is the (maximum entropy) multivariate Gaussian PDF
for (xh, xs, xk) with mean and variance-covariance given by G-
KB, f S(xs) is the truncated Gaussian PDF of Xs, and A−1is a
normalization constant. After the BME analysis is conducted,
oZ(p) is added back to obtain log-NO3

− concentrations.
Validation Statistics. The robustness of CFN-RHO is

tested with a 10-fold cross-validation procedure. In 10-fold
cross-validation data is randomly partitioned into 10 equal size
subsamples. A single subsample is retained as the validation
data for testing the model, and the remaining nine subsamples
are used as training data. Each of the 10 subsamples is used
exactly once as the validation data. Similar variable selections
(which may differ only by hyperparameter) for subsamples
demonstrate model selection robustness.
Models are compared with a leave one-out cross-validation

(LOOCV) mean squared error (MSE) and R-squared. Spatially
smoothed/time-averaged NO3

− and time-averaged NO3
− models

are also tested on how well they predict at the smaller
observation scales. In LOOCV, each log-NO3

− value Zj is
removed one at a time, and re-estimated using the given model
based only on the remaining data. Let Z*(k)be the re- estimate

Table 1. Leave-One-out Cross-Validation Statistics Comparing for Four Estimation Methods That Predict Spatial/Temporally
Averaged NO3

− Concentrations, Temporal Averaged NO3
− Concentrations, And Point-Level Observed NO3

− Concentrationsa

predicted value

spatially smoothed/time-averaged
NO3

− time-averaged NO3
− point-level NO3

−

method MW (n = 951) PW (n = 18,664) MW (n = 951) PW (n = 18,664) MW (n = 12,300) PW (n = 22,062)

spatially smoothed/time-averaged LUR r2 0.69 0.68 0.27 0.08 0.15 0.08
RMSE 0.895 0.293 2.23 1.19 2.40 1.27

time-averaged LUR r2 0.37 0.09 0.23 0.09
RMSE 2.08 1.19 2.28 1.27

space/time BME r2 0.70 0.25
RMSE 1.39 1.23

space/time LUR-BME r2 0.74 0.33
RMSE 1.27 1.08

aNote that methods were used to predict at scales more refined or equal to its calibration scale. MW = Monitoring Well model. PW= Private Well
model. n = number of observations at that scale. Time averaging results in fewer observations. RMSE = root mean squared error. Units of NO3

−

concentration = mg/L.
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for method k, then MSE(k) = (1/n)∑j = 1
n (Zj*

(k) −Zj)
2 and the

cross-validation R-Squared is R2(Z,Z*(k)).

■ RESULTS

Nitrate Concentrations. The MLE of the statewide
monitoring concentrations resulted in a geometric mean and
standard deviation of the log-normal distribution of 0.62 and 14
mg/L, respectively (SI Figure S3). MLE for private wells
resulted in a geometric mean and standard deviation of 0.45
and 5.1 mg/L (SI Figure S3).
Spatially Smoothed/Time-Averaged Nitrate. The 25

km spatially smoothed/time-averaged NO3
− LUR model cross-

validation results (Table 1) in a r2 of 0.69 and 0.68 for
monitoring and private wells, respectively, which is of similar
magnitude to current literature.15 However, as expected, the
LUR model calibrated for spatially smoothed/time-averaged
NO3

− underperforms and does progressively worse (top row,
moving left to right in Table 1) as it predicts time-averaged
NO3

− and point-level NO3
− with lower r2 and higher RMSE. The

variables selected for this model via CFN-RHO are available in
the SI (Table S3).
10-fold cross-validation of spatially smoothed/time-averaged

NO3
− LUR models was done to demonstrate the stability of

CFN-RHO (SI Tables S4, S5). All variables were selected 7 and
10 out of 10 iterations for the monitoring and private well
models, respectively.
Time-Averaged Nitrate. The LUR variables selected

through CFN-RHO for time-averaged NO3
− observed at

monitoring wells and private wells are shown in Table 2. The
LUR calibrated to predict time-averaged NO3

− obtains a r2 of
0.37 and 0.09 for monitoring wells and private wells,
respectively (Table 1, second row). Moreover, the LUR
model predicts point-level NO3

− with a r2 of 0.23 and 0.09
for monitoring and private well, respectively. LUR maps are
available in SI Figure S4.
10-fold cross-validation of time-averaged NO3

− LUR models
was conducted (SI Table S6, S7). All variables selected from

the monitoring well model are selected in at least six iterations
of the 10-fold cross-validation runs. The majority of variables in
the private well model were also stable; however swine lagoons
and deciduous forest were only selected 2 and 0 out of 10
times. In both models, when a variable is not selected in the 10-
fold cross validation it is likely due to other variables that
capture similar source, attenuation, or transport processes (i.e.,
Forest instead of Deciduous, Swine CAFO’s instead of Swine
Lagoons).

Point-Level Nitrate. We modeled the space/time cova-
riance of the LUR offset removed log-NO3

− S/TRF, X(p), using
a two-component, space/time nonseparable, exponential
covariance model following Messier et al:19

τ τ

τ

= − − + −

−
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1 2
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2 (5)

where c1 = 0.67 (log − mg/L)2, ar1 = 93m, aτ1 = 15 days, c2 =

3.6 (log-mg/L)2, ar2 = 1750m, aτ2 = 15840 days for monitoring
wells (SI Figure S5) and a one-component, space/time
exponential covariance model for private well where c1 = 0.76
(log − mg/L)2, ar1 = 1181m,aτ1 = 8640 days (SI Figure S6).
The LUR-BME model, which integrates the time-averaged

LUR as the offset best predicts space/time point-level NO3
−

concentrations with a r2 of 0.74 and 0.33 (Table 1) for
monitoring and private wells, respectively. However, the LUR-
BME predictions have a large variance at locations farther than
the covariance model spatial range. Figure 1 maps the point-
level NO3

− concentrations estimated by LUR-BME for 1 day
during the study period for both monitoring and private well
models. These are the first results to show that there is a 4-fold
improvement in predicting point-level NO3

− when the LUR-
BME method is used in comparison to previous studies that use

Table 2. Nonlinear Regression Model Variables Selected via CFN-RHO and Parameter Estimates for Time-Averaged NO3
−

Monitoring (Left) and Private Well (Right) Modelsa

monitoring well private well

variable variable range coefficient estimate standard error variable range coefficient estimate standard error

Constant n/a −3.71 0.191 n/a −1.570 0.0382
Source Variables

manurea 250 m 0.0759 0.0317 − − −
wastewater treatment residuals (WTR)b 5 km 0.245 0.0274 − − −
farm fertilizera 250 m 0.132 0.0193 250 m 0.0432 0.0025
swine CAFO’sc 2 km 0.117 0.0218 − − −
swine lagoonsb − − − 6 km 0.1079 0.0146
developed lowd 250 m 0.112 0.0214 − − −
developed (all combined)d − − − 100 m 0.0112 7.08e-4
atmospheric depositiona 250 m 0.477 0.129 25 km 2.94e-11 2.53e-10

Attenuation and Transport
Variables

forest (all combined)d 2 km −0.0064 0.00281 − − −
deciduous forestd − − − 4 km −0.0151 0.00127
herbaceous wetlandsd 5 km −0.531 0.079 − − −
histosold 25 km −0.0427 0.0111 25 km −0.106 0.0126
hydrologic soil group dd − − − 500 m −0.012 0.0010
slopee 25 km −0.074 0.0261 − − −

aAll variables are significant with p-value < 0.025. Variables units: a, kg-NO3
−/yr/ha; b, dimensionless; c- 100 pigs; d, percent; e, degrees; (−) not a

variable in the model.
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models for spatially smoothed/time-averaged NO3
−, and five

percent improvement in r2when integrating a LUR model into
the BME framework, over purely BME. A link to a movie of
LUR-BME maps is available in the SI.

■ DISCUSSION

Groundwater Nitrate Maps. This study presents a LUR
model for point-level NO3

− in North Carolina that elucidates

processes affecting its local variability, and then utilizes the
strengths of BME to create the first LUR-BME model of
groundwater nitrate’s spatial/temporal distribution including
prediction uncertainty. The first major finding is the LUR-BME
model for monitoring wells, assumed to represent surficial
aquifers, (Figure 1, SI Movie S1) shows groundwater NO3

− that
is highly variable with many areas predicted above the current
standard of 10 mg/L.

Figure 1. Comparison of LUR-BME results between the monitoring well (left of gray bar) model and private well (right of gray bar) model NO3
−

concentrations. The extent rectangles shows zoomed in portions of the state and are identical areas for both models. Extent (B) shows geometric
mean predictions and then geometric standard deviation.
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Contrarily, the private well results (Figure 1) depict
widespread, low-level NO3

− concentrations, which is consistent
with the current physical understanding in which sources tend
to pollute the surficial aquifer, but then transport over time to
the deeper drinking-water supply aquifers where concentrations
are lower. This finding is significant because of the studies
demonstrating potential significant health effects at concen-
trations as low as 2.5 mg/L.4−7 Additionally, concentrations of
NO3

− could impact ecological function since there are potential
large reserves in deeper aquifers that can discharge to surface
waters.27 The standard deviation maps (Figure 1) demonstrate
the importance of NC-DWR and USGS monitoring wells and
private well testing because areas within the spatial covariance
range are well characterized, whereas those outside are less
reliable.
The second major finding is the LUR-BME maps (Figure 1)

show that groundwater NO3
− in monitoring wells is elevated in

the southeastern plains of North Carolina (SI Figure S7) due to
the larger amount of NO3

− sources and the lack of subsurface
attenuation factors (SI Movie S2) that are present in the coastal
plain region. This corroborates the findings of Nolan and
Hitt,15 which also show spatially smoothed/time-averaged NO3

−

to be the highest in the southeastern plains of North Carolina.
This expands that finding with point-level results showing
significant point-level variability within regional trends. Addi-
tional concerns arise since groundwater flow of the south-
eastern plains contributes significantly to surface water flow.27

Our LUR-BME model can be used with surface water models
to quantify the effect of groundwater NO3

− contributing to
surface water contamination.
The use of the methods in this study provide estimates at a

finer resolution and down to smaller NO3
− values than Nolan

and Hitt,15 resulting in new findings. Nolan and Hitt15

generally show greater concentrations than the LUR-BME
model potentially due to their model using significantly less
training data and averaging NO3

− over watersheds. Our LUR-
BME models benefit from the large amount of monitoring (n =
12 322) and private well (n = 22 067) data, whereas they used
2306 and 2490 across the U.S. for their shallow and drinking
water models, respectively.
LUR-BME benefits from the exactitude property of BME,

thus our model results are in 100% agreement at monitoring
locations. Contrarily, when our observed data is compared with
Nolan and Hitt15 by grouping results according to the bins of
Figure 1, Nolan and Hitt15 overpredicts 48% and 59% of the
time for monitoring and private wells, respectively (SI Figure
S8,S9). As a result of the finer resolution of our maps and their
improved ability to predict low level NO3

−, our results lead to a
significant new finding about the extent of areas with low level
contamination. Our results show private well concentrations are
greater than 0.25 mg/L while monitoring well concentrations
are less than 0.25 mg/L in 30.6% of North Carolina’s area,
compared to 2.6% for Nolan and Hitt15 (SI Table S8,S9).
Likewise, our results show monitoring and private wells are
both above or below 0.25 mg/L at the same location in 68% of
North Carolina, compared to 91% for Nolan and Hitt.15 Hence
whereas Nolan and Hitt15 results suggest the geographical
extent of the low level contamination of drinking water aquifer
is limited to that of the shallow aquifer, which is consistent with
downward transport of NO3

− contamination, our LUR-BME
models shows that in fact the geographical extent of the
contamination of the drinking water extends over a much larger
area than that of the shallow aquifer. This major new finding

provides new evidence indicating that in addition to downward
transport, there is also a significant outward transport of
groundwater NO3

− in the drinking water aquifer to areas outside
the range of sources. This is especially significant because it
indicates that the deeper aquifers are acting as a reservoir that is
not only deeper, but also wider than the reservoir formed by
the shallow aquifers.

LUR Variable Interpretations. Variables selected through
CFN-RHO show processes influencing monitoring well and
private well NO3

− concentrations. Interpretations of regression
sources parameters are based on the nonlinear model
formulation: Since NO3

− was log-transformed and the nonlinear
model has multiplicative interaction, the percent increase of the
geometric mean of NO3

− is the exponential of the source
coefficient multiplied by the result of the attenuation and
transport terms held to their mean value. For instance, in the
monitoring well model, the percent increase in the geometric
mean of NO3

− in mg/L for every 1 kg/yr/ha of farm fertilizer is
exp(0.132 × 0.456) = 1.06 = 5% where 0.456 is the exponential
of the mean attenuation and transport variables multiplied by
their coefficients. For the private well model, the percent
increase in the geometric mean of NO3

− for every 1 kg/yr/ha of
farm fertilizer is exp(0.0432 × 0.4636) = 1.02 = 2%. Every other
source coefficient interpretation for time-averaged NO3

− is
provided in the SI.
Comparing variables selected between the spatially

smoothed/time-averaged NO3
− LUR and the time-averaged

NO3
− LUR help elucidate effects the spatial scale has on

groundwater NO3
− concentrations. The variable hyperpara-

meters selected by CFN-RHO help elucidate potential scales at
which the variables affect groundwater NO3

− concentrations.
For example, the short buffer range of developed low likely
captures the small size of single-family housing yards and their
associated fertilizer applications. The monitoring well model
WTR has an exponential decay range of 5 km. A possible
explanation of this medium range is due to the volatization of
NO3

− into the air, which can then be transported over longer
distances than subsurface transport mechanisms alone. Long
buffer ranges for attenuation and transport variables such as
percent histosol soil and mean slope represent variables with
larger, regional scale effects.
The third major finding is that both wastewater treatment

residuals (WTR) and swine CAFOs were selected as local
sources of groundwater NO3

− contamination, which to our
knowledge have not yet been previously identified as sources in
multivariable models that included regional sources. To help
aide state-wide policy decisions concerning regional versus local
sources, Figure 2 shows the elasticity of LUR predicted sources
in monitoring wells, or the percent change in the geometric
mean of groundwater NO3

− within an area in response to the
percent decrease in a LUR model source given all other sources
remain at current levels. Farm fertilizer and atmospheric
deposition result in the greatest decrease in groundwater NO3

−

state-wide (Figure 2A). Reducing WTR (Figure 2B) and swine
CAFOs (Figure 2C) within 1 km of the source leads to
significant reductions in groundwater NO3

− in the local area
surrounding the sources, demonstrating the importance of
sources on local area NO3

− variability.
Recommendations and Limitations. This work repre-

sents the first step in the development of modeling observed
NO3

− over large domains without averaging. In previous studies,
spatial averaging is utilized because it provides results at the
domain (state, regional, or national) desired for policy making
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decisions and sheds light on processes influencing groundwater
NO3

−. We demonstrated that a LUR at the point-level in space
is currently limited in terms of model predictive capability but
when integrated into the BME framework, the improved model
can estimate within the spatial covariance range similar to LUR
models for spatially smoothed/time-averaged groundwater
NO3

− concentrations. Potential explanatory variables that can
explain the remaining variability in the point-level LUR will
need primary data collection. For instance, we found WTR to
be a significant variable even though we just used location of
fields. If records of timing and amounts of WTR applications
were improved, then the temporal variability in monitoring
wells near WTR application fields could be improved.44

Similarly, a parcel-level query of farm fertilizer application
practices could distinguish farms that use NO3

− fertilizers
efficiently versus farms that apply excessively or with poor
timing. For private wells, the short spatial autocorrelation range
may be due to differences in effectiveness of on-site wastewater
treatment systems or residential fertilizer use. Additionally, we
note that candidate variables not selected via CFN-RHO does
not necessarily indicate they have no effect on groundwater
NO3

− concentrations in surficial or confined drinking-water
aquifers of North Carolina. Many factors both statistically and
physically can affect the selection such as correlation between
candidate variables and local hydrogeology conditions being
overwhelmed by larger scale trends. This study lacked well
depth for the majority of monitoring and private wells. The
monitoring and private well models clearly demonstrate a
difference in concentrations based on depth, so well depth
could quantify this more explicitly as opposed to categorically
as done by this study. Furthermore, pumping rate information
was not available for the private well data set thus the effect of
local pumping could not be quantified. The USGS water use
report12 has information on domestic-use water withdrawals;
however, it is at the county-scale, based on county populations,

and cannot be down-scaled like the agricultural water
withdrawals variable, thus it was not included as a candidate
variable. Additionally, the detection limit of 1 mg/L for the
private well data is high and lowering that detection limit would
improve the ability of the model to delineate areas with low
level contamination that may act as reservoir to surface water
NO3

− recharge. The high detection limit is also potentially
responsible for the lower r2in the private well LUR model for
time-averaged nitrate because it results in a low dependent
variable variance. Predictions of the private well LUR model for
time-averaged nitrate are likely biased toward the detection
limit; however, the LUR-BME model for private well models
likely avoids this bias due to the exactitude property along with
the good spatial coverage of private well data across North
Carolina. Moreover, greater uncertainty in attenuation
processes in deeper aquifers is likely contributing to the
lower r2.
In conclusion, a LUR model with a novel model selection

procedure can elucidate important predictors of point-level
groundwater NO3

− in North Carolina monitoring and private
wells. The methods are translatable to other study areas in the
United States. LUR-BME models can be used to predict
spatial/temporal varying groundwater NO3

− and provide
uncertainty assessments. Further research should integrate
groundwater NO3

− results into surface water models to
determine the extent of groundwater’s contribution to surface
water contamination. Lastly, results will be useful in identifying
localities of elevated NO3

− for increased monitoring.
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